3.3.18 \(\int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\) [218]

3.3.18.1 Optimal result
3.3.18.2 Mathematica [A] (verified)
3.3.18.3 Rubi [A] (verified)
3.3.18.4 Maple [B] (verified)
3.3.18.5 Fricas [A] (verification not implemented)
3.3.18.6 Sympy [F(-1)]
3.3.18.7 Maxima [B] (verification not implemented)
3.3.18.8 Giac [F]
3.3.18.9 Mupad [F(-1)]

3.3.18.1 Optimal result

Integrand size = 25, antiderivative size = 116 \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\frac {3 \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {3 a \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}} \]

output
3/4*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+3/4*a*sec 
(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/2*a*sec(d*x+c)^(5/2)*s 
in(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
 
3.3.18.2 Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.93 \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\frac {a \left (3 \arcsin \left (\sqrt {1-\sec (c+d x)}\right )+2 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+3 \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]],x]
 
output
(a*(3*ArcSin[Sqrt[1 - Sec[c + d*x]]] + 2*Sqrt[1 - Sec[c + d*x]]*Sec[c + d* 
x]^(3/2) + 3*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])])*Tan[c + d*x])/(4*d 
*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 
3.3.18.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.99, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 4290, 3042, 4290, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 4290

\(\displaystyle \frac {3}{4} \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{4} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4290

\(\displaystyle \frac {3}{4} \left (\frac {1}{2} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{4} \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {3}{4} \left (\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {3}{4} \left (\frac {\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

input
Int[Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]],x]
 
output
(a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]]) + (3*(( 
Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a*S 
ec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4
 

3.3.18.3.1 Defintions of rubi rules used

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4290
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*b*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/( 
f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2*n - 
1)))   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; Fre 
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 
3.3.18.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(212\) vs. \(2(96)=192\).

Time = 1.64 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.84

method result size
default \(\frac {\sec \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (6 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2}-3 \cos \left (d x +c \right )^{3} \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-3 \cos \left (d x +c \right )^{3} \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+4 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )\right )}{8 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(213\)

input
int(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/8/d*sec(d*x+c)^(5/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d* 
x+c)+1))^(1/2)*(6*(-1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)^2-3*cos( 
d*x+c)^3*arctan(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(-1/(cos(d*x 
+c)+1))^(1/2))-3*cos(d*x+c)^3*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d* 
x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))+4*(-1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)* 
cos(d*x+c))
 
3.3.18.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 356, normalized size of antiderivative = 3.07 \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\left [\frac {3 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (3 \, \cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{16 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {3 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (3 \, \cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{8 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

input
integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")
 
output
[1/16*(3*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7 
*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*co 
s(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos( 
d*x + c)^3 + cos(d*x + c)^2)) + 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))* 
(3*cos(d*x + c) + 2)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2 + 
d*cos(d*x + c)), 1/8*(3*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*arctan(2* 
sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d* 
x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)) + 2*sqrt((a*cos(d*x + c) 
 + a)/cos(d*x + c))*(3*cos(d*x + c) + 2)*sin(d*x + c)/sqrt(cos(d*x + c)))/ 
(d*cos(d*x + c)^2 + d*cos(d*x + c))]
 
3.3.18.6 Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**(5/2)*(a+a*sec(d*x+c))**(1/2),x)
 
output
Timed out
 
3.3.18.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1264 vs. \(2 (96) = 192\).

Time = 0.44 (sec) , antiderivative size = 1264, normalized size of antiderivative = 10.90 \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\text {Too large to display} \]

input
integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")
 
output
-1/16*(12*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(7/2* 
arctan2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqr 
t(2)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(d*x + c), cos(d*x + c))) - 4*(s 
qrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin( 
d*x + c), cos(d*x + c))) - 12*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2* 
d*x + 2*c))*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 3*(2*(2*cos(2*d 
*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^ 
2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x 
 + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), co 
s(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt 
(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arcta 
n2(sin(d*x + c), cos(d*x + c))) + 2) + 3*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4 
*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c) 
^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2* 
d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*s 
in(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2( 
sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos 
(d*x + c))) + 2) - 3*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4* 
d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4 
*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*l...
 
3.3.18.8 Giac [F]

\[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\int { \sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

input
integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.3.18.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\int \sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

input
int((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2),x)
 
output
int((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2), x)